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ABSTRACT 

Let R be a prime P.I. ring, finitely generated over a central noetherian sabring. 
Let P be a height one prime ideal in R. We establish a finite criteria for the left 
(right) Ore localizability of P, provided p/p2 is left (right) finitely generated. 
This replaces the noetherian assumption on R appearing in [BW], using an 
entirely different technique. 

Introduction and notations 

The present paper should be considered as a continuation of  [BW]. Here we 

extend one of  the main results of  [BW] to the non-noetherian case. The present 

technique, however, is entirely different and the paper is independent of  [BW]. 

In order to describe our main result, we recall that for a prime p.i. ring R,  

one considers (e.g., [R, p. 208]) the trace ring of  R,  

T ( R ) ~ R [ c ~ ( x )  [ 1 <= i <-_ n, x E R ]  

of R, where c~(x) is the i-th coefficient of  x in the Cayley-Hamilton equation 
x" - c~(x)x " - I .  • • + c , (x )  = 0 and n 2 is the dimension of  the quotient ring of 

R over its center. It is known (e.g. [Sch], [R]) that T ( R )  is a finite module over 

its noetherian center, provided R = A(xt . . . . .  Xk }, a prime P.I. ring and A is a 

central noetherian subring of  R.  

Let P be a height one prime ideal in R and P1 . . . . .  P, be all the prime ideals 

in T ( R )  contracting to P (finite in number by Lemma 1). Let Pi = 

Pi N Z(T(R)),  i = 1, . . . ,  r, where Z(T(R))  is the center of  T(R) .  We say that 

P satisfies condition (.) if the following implication holds, 
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If Q is a prime ideal in T(R) and Q N Z(T(R))  = pj for some 
(,) 

j ,  1 < j < r, then Q = Pd, for some 1 < d < r. 

We are now able to state our main result 

THEOREM 1. Let R = A { X , . . . , X k }  be a prime P.I. ring, A a central 
noetherian subring and P a prime ideal in R satisfying 

(1) height (P) = 1, 
(2) p/p2 is a finitely generated right (left) R module. 

Then P is right (left) localizable iff P satisfies condition (,). 

Theorem 1 is proved by showing that condition (,) implies (and in fact is 
equivalent) to another condition (**) as explained below. This is done in 
Theorem 2. We then use (**) in establishing the left localizability of P. 

This generalizes one of the main results in [BW], replacing the noetherian 
assumption on R by (2). The price which is paid is firstly the severe restriction 
in (1), and secondly, the conclusion is not left-right symmetric, unlike the case 
in [BW]. These remarks actually raise several seemingly interesting questions; 

QUESTION 1. IS (1) actually necessary for the conclusion of Theorem 1? 

QUESTION 2. Assuming (1). Is (2) a necessary assumption in Theorem 1 ?. 

A related question is the following 

QuEs'rIoN 3. Is there any left-right symmetric version of Theorem 1 
(along the lines of  [BW])? 

T h e  proof o f  the  m a i n  results  

In order to prove Theorem I we need to introduce another condition as 
follows. Let S---- ~ ( P ) - ~ { r E R  I r is regular mode P}. We say that P satisfies 

condition (**) if 
for every s ~ S there exist v0, • • •, vd- ~ E R, vd E S such that 

(**) v0 detd(s) + vl det d- I ( S )  "31- ' ' "  "31- •d -1  det(s) + v d = O. 

Important  to our considerations is the following 

THEOREM 2. Let R = A {x~ , . . . ,X k}  be a prime p.i. ring, A a centrai 
noetherian subring. Let P be a prime ideal in R such that height(P) = 1 and 

satisfies (,). Then e satisfies (**). 

Before proving Theorem 2 we need several lemmas. 
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LEMMA 1. Let R = A{x~ . . . . .  Xk } be a prime p.i. ring, P a prime ideal in l~ 
with height(P) = 1. Let P' be a prime ideal in T(R ) such that P' n R = P. Then 

height(P') = 1 and there are only finitely many such P'. 

PROOF. T(R) is noetherian (e.g. [R]), so let nil-radical (PT(R))= 
Pl N . - -  N Pe. If height(P') > 1 there are, by the principal ideal theorem as in 
[K, Thm. 144], infinitely many height one primes under it, each contracts non- 
trivially to R and so all must contract to P, violating the finiteness o fk .  Q.E.D. 

We next introduce R [P] - - R  {s- 1 I S ~ S ,  s-1 ~ Q(R)}, the subring gener- 
ated by R and {s-l}, where Q (R) is the Artinian quotient ring of  R. Similarly 
we have T(R)[P] = T (R){ s - I [ sES} .  

We next prove the following 

LEMMA 2. Let R = A{xL, . . . ,  Xk } be a prime p.i. ring, P a prime ideal in R 
with height (P)=  1. Then 

(1) R [P], T(R)[P] are prime rings with quotient ring Q(R). 
(2) R[P]PR[P] is the unique non-zero prime ideal in R[P] ana 

R [P]/R [P]PR [e] ~ Q(R/P), provided R [P] ~ Q(R). 

PROOF. By R C R[P] C T(R)[P] C Q(R), (1) is clearly established. 
Let V ÷ (0} be a proper prime ideal in RIP]. By (1) V N R ~ (0}, moreover 

by [ArSc, Lemma 9.2] V n R is a prime ideal in R. Clearly V n R c P. Now 
since height(P) = 1 we get V N R = P and consequently R [P]PR [P] c V. We 
have 

R/P __ R [P]/R [P]PR [P] ---- B. 

Every non-zero divisor in R/P has a preimage in S----ca(P) and this is 
invertible in B. Let A----Z(R/P) and di* ~_A\ {0}. Since B is generated over 
R/P by inverses of elements in R/P we get that A C Z(B). Now as before each 
• E d l  has a preimage in S implying that J is invertible in B. Hence 
(R/P)a, c_ B, that is Q(R/P) c_ B. But B is generated over R by inverses and 
they all live in Q(R/P), so Q(R/P)= B and consequently R[P]PR[P] is a 
maximal ideal in R [P] establishing (2). 

PROPOSITION 3. Let R = A { x ) , . . . ,  Xk} a prime p.i. ring and P a height 
one prime ideal in R satisfying (.). Then 

T(R [P]) = T(R )det(s) = T(R )4, 

where S ~ ca(P) and,~ - -  Z(T) \ (p~ U . . .  U p,). 
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PROOF. We initially observe that the first equality is due to [BS, Lemma 1 ]. 

We next verify the inclusion T(R)a c_ T(R)aetts). Indeed, let z E 2 and suppose 

that z is not invertible in T(R)d~tts). Hence z ~ V, a prime ideal in T(R)dettS). We 

may assume (by the principal ideal theorem) that he ight (F)= 1. But V = 

I/'0~, where V0 is a height l prime ideal in T(R) implying that z E V ¢q T(R) = 
V0. Now, V 0 n R _c p, otherwise F0 n R n S ~ ~ implying the existence ot 

s E V N R, s ~ S .  But s is invertible in T(R)dctts~ (use the Cayley-Hamilton 

equation), a contradiction to the properness of V. Now height(P) = l implies 

Vo ¢3 R = P and consequently Fo = Pj for some j .  Again we reach a contradic- 

tion to the choice of z since z ~ F0 = Pj. We remark that we did not use 

condition (,) for the previous inclusion. We now show that T(R)detts) C_ T(R)a. 
By (*), P t~ , . . . ,  P~, are all the maximal ideals of  T(R)~. So 

R/P C_C_ T(R)x/OPi~ -~ T(R)a/Pt, • . . .  • T(R)~/P,~, 

a semisimple Artinian ring. Let s ~ S .  If s is a zero divisor in T(R)~/AP~, it 

must be so in T(R)~/Pj,, for some j ,  1 < j  < r. But R/P C_ T(R)~/Pj~ is a central 

extension and the latter is simple Artinian and of the same p.i. degree as R/P, a 
contradiction. So the image of S in T(R)~/NP~, consists of  regular elements, 

hence of invertible elements. Now the Jacobson radical of  T(R)a is n ~= 1 P~, 

so S consists of  invertible elements in T(R)~. Consequently R [P] c T(R)~. 
Thus T(R[P])C T(T(R)a)= T(R)a implying by [BS, Lemma 1] that 

T(R )dct(S) = T(R [e]) = T(R)a. Q.E.D. 

COROLLARY 4. Let R, P be as in Proposition 3. Then 

det(S) N (~Ji=l Pi) = ~ ' where S --- ~(P). 

PROOF. Let s ~ S  so that det(s)~Pj for some j .  Hence det(s)~pj. Now 

det(s) is invertible in Z(T)a = Z(T(R)~), a contradiction to the properness 

of  Pj~. Q.E.D. 

COROLLARY 5. Let R, P be as in the previous proposition. Then 

Krull dim R [P] = 1. 

PROOF. We need (by Lemma 2) only show that R[P] ÷ Q(R). Suppose to 

the contrary that R[P] = Q(R). Then T(R[P]) = Q(R), but by Proposition 3, 

T(R[P]) = T(R)~ ~ Q(R), a contradiction. 
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LEMMA 6. Let R = A { x l , . . . ,  Xk} be a prime p.i .  ring and P a height one 

prime in R satisfying (.). Then 

T(R )d,,~s> = T(R )[P]. 

PROOF. Clearly T(R)de,(s ) D_ T(R)[P]. In order to prove the opposite we 

need to show that det(S) consists of  invertible elements in T(R)[P]. Suppose 

det(c) is not invertible in T(R)[P] for some c ~ S .  So det (c)~ V, a prime ideal 

in T(R)[P]. Now by Lemma 2 and Corollary 5, V N R[P] = R[P]PR[P] and 

consequently V N R = P. Moreover, let V0 = V A T(R), then ([ArSc, Lemma 

9.2]) V0 is a prime ideal in T(R) so that V0 ~ R = P. Consequently V0 = Pjfor 

some j ,  reaching, since det(c)EPj,  a contradiction to Corollary 4. Q.E.D. 

LEMMA 7. Let R = A{x~, . . . ,  Xk } a prime p.i .  ring, P a height one prime 
ideal in R,  and P' a prime ideal in T(R)  satisfying P ' N  R = P. Then, 

T(R)d~t(s)/P'd,t<s) is a finite central extension o f  Q(R/P),  the quotient ring oj 
R /P .  

PROOF. By Lemma 1, Height(P ' )= 1. Now, T(R) is finitely generated 

as a ring over R by a finite number of central elements, hence the same 

holds for T(R)[P] over R[P]. Now by the previous Lemma T(R)[P] = 

T(R)dettS) so T(R)det(s)/P'det(S) is a finitely generated central extension of 
R [P]/P'dettsJ N R [P]. But, we have P'det<s~ A R [P] = R [P]PR [P], so the result 

follows by R [P]/R [P]PR [P] = Q(R/P), and by the Nullstellensatz applied to 

T(R)detts~/P'dettS~, a finitely generated algebra over Z((Q(R/P)).  Q.E.D. 

The proof of Theorem 2 

Let P I , . . . ,  Pr, be the prime ideals in T(R) satisfying Pi N R = P, i = 

1 , . . . , r .  By Lemma 1, height(Pi)= 1, i =  1 . . . .  , r .  By Lemma 7 

T(R)aet(s~/P~, is a finite central extension of Q(R/P),  i = 1 . . . . .  r. Let 

s E S ---- c~(p). By Corollary 4 det(s) ~ I..J;_ ~ p~. So det(s) has a non-zero divisor 

image in each of T(R)det(s)/Pi~s~, i --- 1 . . . .  , r; and therefore in 

B ~- T(R)aet(s)/Pl~s, ~ " • " @ T(R)aet(s)/Pr~sr 

We have, by the integrality of B over Z(Q(R/P))  (Lemma 7), the existence of  

w, v~ . . . .  , vd~R ,  w, vaES  so that 

d e t ~  d + ~1~ -~ det(s) a-~ + • • • + ~d~ -I = 0, 

where det(s) is the image of  det(s) in B. Equivalently, 
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wdet(s)  d + vl det(s) d-I + • • • + vdE f i  Pi. 
i=l 

Let I = Conductor(R,  T(R))  n P. 

CLAIM. I is an ideal in T(R).  

PROOF. Let D -~ Conductor(R,  T(R)).  Consequently I = D n P. Then 

T(R ) IT(R ) c_ T(R )DT(R ) C_ D. Thus 

T(R ) IT(R ) c_ O O T(R )PT(R ) c. R n T(R )PT(R ) = P, 

implying that T(R ) IT(R ) c_ D n P = I. Q.E.D. 

Then since height(P~)= 1, i = 1 , . . . ,  r, I C P~ and P~ is minimal  over 

I ,  i = 1 . . . . .  r. Let Q~ . . . . .  Qe be the other minimal  primes in T(R)  contain- 

ing I. By (.)  there exists t E he= l Q; n S. Since 

n i l - r a d I = P ~ n . . . N P r n Q ~ n . . . n Q ~ ,  

there exists a n u m b e r f s o  that  (rad I )  r __. I and so 

[(w deta(s) + v~ deta-~(s) + . .  • + va)t]sEI. 

Consequently 

a 0  detm(s) + a l  d e t  m - I ( s )  dl- ° ° • J r  am ~ X  El, 

where a0 = (wt) s, al . . . . .  am = (vat) r are all in R and am E S .  Finally I c /~  

implies that  am - x E S. Q.E.D. 

LEMMA 8. Let R = A{x~ . . . .  , Xk} be a prime p.i .  ring, P a height one 

prime ideal o f  R satisfying (**). Let  I = Conductor(R,  T(R))  n P. Then for 

every integer m there exists an integer f==-f(m) and s E S  so that pSs E1  m, 
spS c_ Im. 

PROOF. Firstly, as in the previous proof, I is an ideal in T(R).  Lel 

V1,. • •,//", be the other minimal  primes in R containing I .  

We have P~ V~,p4 v, e2.. .  V,~P I,÷~ C_ Im. Since V~ ~ P for i = 1 , . . . ,  r we pick 

t E n ~ _ l  v~ o s .  Let e = max{e~ l i = 1, . . . .  p )  and z=--t e. Thus 

pAz,Pf~zaPf,. • • pS, zrPf,., c_ I m, for all a, fl . . . . .  7 >-- 1. 

Now since + det(z) = - c n - l ( z ) z . . .  + Cl(Z)Z n-I _ z ~ (cl(z) = tr(z)), we 

have 
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py, z ,pI ,  zppI,. . . pip det(z)PY, *, 

n 
c y  

i=l 
PZ, z " P ~ z P P ~ .  . . P~z~P~+,c ,_ , ( z )  

C ~ ImCn_i(Z) C I m, 
i=l 

We can continue the process and finish taking 

d - I  

iz0 

REMARK. 

ideal J). 

LEMMA 9. 

f ( m ) = f l + . . . + f p + l  and S = ( V d )  p+l. 

The argument for sP y C_ I m is similar. Q.E.D. 

DEFINITIONS. Let J __. P be an ideal in R. j~i), the i-th symbolic power of J,  

is defined by 

jtu = {x UR I there exists s ~ S ,  such that either s x  ~ j i  or x s  ~_J~}. 

It is not clear that J~), i > 1, is an ideal in R (for an arbitrary 

pf~z~pLzPpL. . . pf,  pf,+, det(z) d- ivi 

pf~z~pf~z# . . . pf~ d e t d - i ( z ) e ~ + , v i  ~ I m . 

Le t  I ,  P be as in L e m m a  8. Then  

I tin) = { x E R  [ t h e r e e x i s t s s E S ,  S X E I  m } 

= {x  ~ R [ there exists  s ~ S ,  x s  ~ I m } 

= { x  E R ] there exists  s E S ,  det(s)x E I m }. 

Consequently 

d - I  

i=O 

1 'I, z ~ P & z P . . .  p&pz, +, v~ 

where the last inclusion is valid since I is an ideal in T ( R ) .  Similarly 

Pf, z~Pf~zPP f~. . .Pf, detr(z)Pf,+l C_ I m for all a, fl, . . . , 7 > 1. 

Now by Theorem 2, taking z = s, there exist Vo . . . . .  v d E R ,  v d E S  SO that 

vo detd(s) + v~ detd-l(s) + • • • + Vd = O. 
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PROOF. Let x E R,  s E S such that sx  E I m . Hence 

n 

det(s)x = Y. + c,_~(s)six~- Y. c,_~(s)I m c_I  m, 
i f f i l  i = 1  

since I is an ideal in T(R) .  Conversely, say det(s)x EIm for some s ~ S .  Then, 

since I is an ideal in T(R) ,  d e t r ( s ) x ~ I  m for all 7 > 1. By (**), there are 

Vo, • • •, Vd- ~ E R ,  Vd E S,  such that 

v0 detd(s) + vl detd-l(S) + • • • + Vd = O. 

Consequently vdx = Y/=I - Vd-~ det~(s)x E1 m. Consequently 

{x E R I there exists s E S,  sx  E I m } = {x E R I there exists s E S, det(s)x E I m } 

and similarly is equal to ( x E R  I there exists s E S ~ x s E I m } .  Clearly this 

implies that I (m) is equal to each one of  the previous sets. Q.E.D. 

COROLLARY 10. I (m) is a two sided ideal in R .  

PROOF. Trivial by using Lemma 9. 

LEMMA 11. Let  P,  I ,  f ,  m be as in L e m m a  8. Then we have 

ps c P ~  c_ I (m) c_ P. 

PROOF. Clearly pS C p~r). Let x E P ~ .  Hence, there exists t E S so that 

either xt  E P  s of tx E P  s. Say x t  E P  s. By Lemma 8, there exist s E S  so that 

pSs c_ I m . Consequently, x (  ts ) = (xt )s E 1  m, that is x E/cm). The possibility that 

tx  EpSis handled similarly using sP s C_ Im. So P ~  ___ I ~m) is established. Finally 

we shall show that I tin) ___ P. Let x E1  (m) so xs  E 1  m C I C P, for some s ES .  But 

s E S  = ~g(P) ensures that x E P .  Q.E.D. 

LEMMA 12. Let  1~ = R / I  (m), P = P / I  (m). Then ~ ( P )  cc_ c¢(0). 

PROOF. Let a E ~(P) ,  ax = 0. We shall show that :~ = 0. We have ax E/tin), 

a E c¢(p). Let t E S  satisfying t ( a x ) E I  m, then ( ta)x  E 1  m implies that x E/tm), 

i.e. ~ = 0. That :Pd = 0 implies 2 = 0 is proved along the same lines. Q.E.D. 

PROPOSITION 13. Let  R = A{Xl . . . .  , Xk} be a pr ime p . i .  ring, P a height 

one prime ideal in R such that p /p2  is finitely generated as a right R module.  Let 

I = Conductor(R, T(R) )  n P. Then,  given x E R ,  s E S,  there exist y E R ,  t E 3 

so that x t  - sy E 1  m. 

PROOF. It is standard to show that P/P~ is fight finitely generated for each i. 
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So, by Lemma 11,/~ = R / I  (m) has a unique minimal prime P = P / I  <') and P is 

right finitely generated. Moreover, by Lemma 12, cg(p)___ c¢(0)" So, by the 

non-noetherian version of Small's theorem appearing in [W],/~ has a right 
Artinian quotient ring. That is, there are y~ ER,  t~ E S  so that xt~ - sy~ E I  ~'~). 

Let  t 2 E S  so that (xt~ - SYl)t2EI m (Lemma 9). Take t --- tit2, Y = ylt2. Q.E.D. 

LEMMA 14. Let  R ,  P be as in Theorem 2. Le t  S = cg(p) and  s E S.  Then 

there exists a natural number m~ so that i f a E I m , ,  there exists t E S,  b E I so that 

at = sb. 

PROOF. I = I T ( R ) =  I Z ( T ( R ) ) .  So, since T ( R ) i s  noetherian 

I = g~ T ( R )  + . . .  + gxT(R)  = g~RZ(T (R) )  + . . .  + gxRZ(T(R) ) ,  

where g~ E I c R. Consequently, for any m, each element of I "  is a sum of 

terms of the form gilrlzlgi2r2z2...gimrmZm where r~ER,  z g E Z ( T ( R ) ) ,  i = 

1 , . . . ,  m. Now s -~I  CC_ Idet(S), SO s-~gg = hi(det(y)) -~, h~EI ,  for some y E S .  

Equivalently g, det(y) = sh~, i = 1 . . . . .  x .  

By (**) we have v0 detd(y) + ' • • + Vd = O, Vi E R ,  v d E S .  So 

( g . r l z l  " " " g i d r d Z d ) F d  = - -  ( g i l r l 2 1  ' '  "giardZd)(Vo detd(Y) + " "  + Vd- l det(y)) 

= - -  ( s h i l r l z I "  • • S h i d r d Z d V o  "q- shilrlzl" • • Shid-trd- l Z a - l g i d r d Z d V l  "4- " " " 

+ sh~r~ Z l g i 2 r 2 g 2  ° ° ° g i d r d Z d F d  _ 1) = sb, 

where 

b = - hi~rlz~. • • S h i d r a Z d V O  . . . . .  h i l r I g l g i 2 r 2 z 2 "  " " g i d r d Z d V d  - I .  

Now b EI ,  since each summand contains h ,  E1 and I is also an ideal in 

T(R) .  By linearity the same holds for all elements o f I  d. So pick m~ = d, t = Vd, 

and b as above. Q.E.D 

THE PROOV OF THEOREM 1. We establish first the sufficiency of (.). By 

Theorem 2, P satisfies (**). Let x E R ,  s E S = - - ~ ( P ) .  We pick m~ which 

satisfies the conclusion of Lemma 14. By Proposition 13 there exists y E R ,  

t ' E S  so that x t ' - s y E I m , .  Let a = x t ' - y s E I  m, and b, t as in Lemma 14. 

Then (x t '  - sy)t  = at = sb. Equivalently, x t ' t  = s(yt  + b) and the right Ore 

condition is deafly verified. To prove the necessity of condition (.) we use the 

same argument as in [BW]. Q.E.D. 
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