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ABSTRACT

Let R be a prime P.1. ring, finitely generated over a central noetherian subring,
Let Pbe a height one prime ideal in R. We establish a finite criteria for the left
(right) Ore localizability of P, provided P/P? is left (right) finitely generated.
This replaces the noetherian assumption on R appearing in [BW], using an
entirely different technique.

Introduction and notations

The present paper should be considered as a continuation of [BW]. Here we
extend one of the main results of [BW] to the non-noetherian case. The present
technique, however, is entirely different and the paper is independent of [BW].

In order to describe our main result, we recall that for a prime p.i. ring R,
one considers (e.g., [R, p. 208)) the trace ring of R,

T(R)=R[c(x)|1<i<n,xER]

of R, where c;(x) is the i-th coefficient of x in the Cayley—-Hamilton equation
x" —¢(x)x"~ ... + ¢,(x) =0 and n?is the dimension of the quotient ring of
R over its center. It is known (e.g. [Sch], [R]) that T(R) is a finite module over
its noetherian center, provided R = A{x,,...,x},aprime P.I.ringand Aisa
central noetherian subring of R.

Let P be a height one prime ideal in R and Py, . . ., P, be all the prime ideals
in T(R) contracting to P (finite in number by Lemma 1). Let p, =
P,NZ(T(R)),i=1,...,r,where Z(T(R)) is the center of T(R). We say that
P satisfies condition (%) if the following implication holds,
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If Qis a prime ideal in T(R) and Q N Z(T(R)) = p; for some
(=) Jj,1=j=r,thenQ =P, forsomel =d =r.
We are now able to state our main result

THEOREM 1. Let R =A{x,,...,x;} be a prime P.I. ring, A a central
noetherian subring and P a prime ideal in R satisfying

(1) height (P) = 1,

(2) P/P? s a finitely generated right (left) R module.

Then P is right (left) localizable iff P satisfies condition ().

Theorem 1 is proved by showing that condition () implies (and in fact is
equivalent) to another condition () as explained below. This is done in
Theorem 2. We then use (x#) in establishing the left localizability of P.

This generalizes one of the main results in [BW], replacing the noetherian
assumption on R by (2). The price which is paid is firstly the severe restriction
in (1), and secondly, the conclusion is not left-right symmetric, unlike the case
in [BW]. These remarks actually raise several seemingly interesting questions;

QuesTioN 1. Is (1) actually necessary for the conclusion of Theorem 1?

QUESTION 2. Assuming (1). Is (2) a necessary assumption in Theorem 17.
A related question is the following

QuEesTION 3. Is there any left-right symmetric version of Theorem 1
(along the lines of [BW])?
The proof of the main results

In order to prove Theorem 1 we need to introduce another condition as
follows. Let S = @(P)={r ER | r is regular mode P). We say that P satisfies
condition (#x) if
for every s €S there exist v,, ..., v, ER, v, €S such that

(#%) vodet?(s) + v, det? 1(s) + - -+ + v, det(s) + v, =0.
Important to our considerations is the following

THEOREM 2. Let R =A{x,,...,x;} be a prime p.i. ring, A a centrai
noetherian subring. Let P be a prime ideal in R such that height(P) = 1 and F
satisfies (x). Then P satisfies (x).

Before proving Theorem 2 we need several lemmas.
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LEMMA 1. LetR =A{x,,...,x;}beaprimep.i.ring, Paprimeidealin R
with height(P) = 1. Let P’ be a prime ideal in T(R) such that P’ N R = P, Then
height(P’) = 1 and there are only finitely many such P’.

ProoF. T(R) is noetherian (e.g. [R]), so let nil-radical (PT(R))=
PN .-+ NP, If height(P’) > 1 there are, by the principal ideal theorem as in
[K, Thm. 144], infinitely many height one primes under it, each contracts non-
trivially to R and so all must contract to P, violating the finiteness of k. Q.E.D.

We next introduce R[P]=R{s"'|s€ES, s '€Q(R)}, the subring gener-
ated by R and {s '}, where Q(R) is the Artinian quotient ring of R. Similarly
we have T(R)[P] = TR){s""'|s E€S}.

We next prove the following

LEMMA 2. LetR =A{x,,...,x.}beaprimep.i.ring, Paprimeideal in R
with height(P) = 1. Then
(1) R[P], T(R)[P] are prime rings with quotient ring Q(R).
(2) R[P]PR[P] is the unique non-zero prime ideal in R[P] ana
R[P)R[P)PR[P]= Q(R/P), provided R[P] # Q(R).

ProoF. By R C R[P] C T(R)[P] C Q(R), (1) is clearly established.

Let V # {0} be a proper prime ideal in R[P]. By (1) ¥ N R # {0}, moreover
by [ArSc, Lemma 9.2] VN R is a prime ideal in R. Clearly ' N R C P. Now
since height(P) = 1 we get ¥ N R = P and consequently R[P]PR[P]C V. We
have

R/P C R[P)/R[P)PR[P]=B.

Every non-zero divisor in R/P has a preimage in S=%(P) and this is
invertible in B. Let A = Z(R/P) and A*=A\{0}. Since B is generated over
R/P by inverses of elements in R/P we get that A C Z(B). Now as before each
F €A has a preimage in S implying that # is invertible in B. Hence
(R/P)s, € B, that is Q(R/P) C B. But B is generated over R by inverses and
they all live in Q(R/P), so Q(R/P)= B and consequently R[P]PR[P] is a
maximal ideal in R[P] establishing (2).

ProposITION 3. Let R =A{x,,...,x;} a prime p.i. ring and P a height
one prime ideal in R satisfying (). Then

TR[P]) = T(R)exs) = T(R )1,
where S = €(P) and A=Z(T)\(p, U - - - U p,).
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ProoF. We initially observe that the first equality is due to [BS, Lemma 1].
We next verify the inclusion T(R); € T(R)4s)- Indeed, let z €4 and suppose
that z is not invertible in T(R )ges)- Hence z €V, a prime ideal in T(R )yeys). We
may assume (by the principal ideal theorem) that height(}V)=1. But V' =
Vowsy Where Vg is a height | prime ideal in T(R) implying thatz €V N T(R) =
V,. Now, ¥, N R C P, otherwise ;N R NS # & implying the existence of
SEVNR, sES. But s is invertible in T(R )4s) (use the Cayley-Hamilton
equation), a contradiction to the properness of V. Now height(P) = 1 implies
Vo N R = P and consequently ¥, = P; for some j. Again we reach a contradic-
tion to the choice of z since zE€V, = P;. We remark that we did not use
condition (x) for the previous inclusion. We now show that T(R )geys) € T(R);.
By (%), Py, ..., P, are all the maximal ideals of T(R),. So

RIP C T(R),/NP, =T(R),/P,, ® - - - ® T(R),/P,,

a semisimple Artinian ring. Let s€S. If 5 is a zero divisor in T(R),/(MP, it
must be so in T(R),/P,, for some j, 1 =j <r. But R/P C T(R),/P, is a central
extension and the latter is simple Artinian and of the same p.i. degreeas R/P,a
contradiction. So the image of S in T(R),/NP, consists of regular elements,
hence of invertible elements. Now the Jacobson radical of T(R), is N/, P,
so .S consists of invertible elements in T(R),. Consequently R{P] C T(R),.
Thus T(R[P]))C T(T(R),)=T(R), implying by [BS, Lemma 1] that
T(R)susy = T(RIP]) = T(R);. QED.

COROLLARY 4. Let R, P be as in Proposition 3. Then
det(S) N ( U P,-> =@,  whereS = €(P).
i=1

Proor. Let s€S so that det(s)EP; for some j. Hence det(s)€ p;. Now
det(s) is invertible in Z(T), = Z(T(R),), a contradiction to the properness
of P,. Q.E.D.

COROLLARY 5. Let R, P be as in the previous proposition. Then
Krull dim R[P] = 1.

Proor. We need (by Lemma 2) only show that R[P] # Q(R). Suppose to
the contrary that R[P] = Q(R). Then T(R[P]) = Q(R), but by Proposition 3,
T(R[P]) = T(R), # Q(R), a contradiction.
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LEMMA 6. Let R = A{xy,...,x.} beaprime p.i. ring and P a height one
prime in R satisfying (x). Then

T(R )det(S) =T(R)[P }

ProOOF. Clearly T(R)ges) 2 T(R)[P]. In order to prove the opposite we
need to show that det(S) consists of invertible elements in T(R)[P]. Suppose
det(c) is not invertible in T(R){P] for some ¢ €S. So det(c)E V, a prime ideal
in T(R)[P]. Now by Lemma 2 and Corollary 5, ¥ N R[P] = R[P]PR][P] and
consequently V' N R = P. Moreover, let V,= V' N T(R), then ([ArSc, Lemma
9.2]) ¥, is a prime ideal in T(R) so that ¥, N R = P. Consequently V;, = P, for
some j, reaching, since det(c) € P;, a contradiction to Corollary 4. Q.E.D.

LEMMA 7. Let R =A{x,...,x} aprimep.i.ring, P a height one prime
ideal in R, and P’ a prime ideal in T(R) satisfying PPN R =P. Then,
T(R)aexsy! P aexcs) s a finite central extension of Q(R/P), the quotient ring of
R/P.

PrROOF. By Lemma 1, Height(P’) = 1. Now, T(R) is finitely generated
as a ring over R by a finite number of central elements, hence the same
holds for T(R)[P] over R[P]. Now by the previous Lemma T(R)[P]=
T(R)eysy 80 T(R)gesy/P’aensy 18 a finitely generated central extension of
R[PY/P’ 45y N R[P]. But, we have P45 N R[P] = R[P]PR[P], so the result
follows by R[P)/R[P]PR[P] = Q(R/P), and by the Nullstellensatz applied to
T(R)gexsy/ P’ qexs) @ finitely generated algebra over Z((Q(R/P)). Q.E.D.

The proof of Theorem 2

Let P,..., P, be the prime ideals in T(R) satisfying P, N\R=P, i =
l,...,r. By Lemma 1, height(P,)=1, i=1,...,r. By Lemma 7

T(R)4eys)/Pis, 1s a finite central extension of Q(R/P), i=1,...,r. Let
5 €S = @(P). By Corollary 4 det(s)¢& U, _, P;. So det(s) has a non-zero divisor
image in each of T(R)4es)/Pipsp i = 1, . . ., r; and therefore in

B =T(R)exs)/P: s @ OT(R )aewsy! P, raeus)”

We have, by the integrality of B over Z(Q(R/P)) (Lemma 7), the existence of
w,v,..., v, €R, w,v;ES so that

det(s)’ + vow='det(s)" "+ - - + w1 =0,

where det(s) is the image of det(s) in B. Equivalently,
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wdet(s)? + v, det(s)*~'+ ... +v,€ N P,.

i=1

Let I = Conductor(R, T(R)) N P.
CLamM. [is an ideal in T(R).

Proor. Let D=Conductor(R, T(R)). Consequently I =D N P. Then
T(RMT(R)C T(R)DT(R)C D. Thus

TRUTR)SD NTRPT(R)SRNTR)PT(R)=P,

implying that T(R)IT(R)CDNP=1. Q.E.D.
Then since height(P,)=1, i=1,...,r, I C P, and P; is minimal over
ILi=1,...,r.LetQ,..., Q,be the other minimal primes in 7(R) contain-

ing 1. By (#) there exists tE();_; Q; N S. Since
nilrad/ =P N---NPNQN---NQ,
there exists a number f'so that (rad ) C I and so

[(wdeté(s) + v, det* " (s) + - - - + vtV EL

Consequently
agdet™(s) + a, det” " '(s)+ - - - +a,=x€I,
where ay=wtY, a,...,a, =(vt) are all in R and a,, €S. Finally ICP
implies that a,, — x € S. Q.E.D.
LEMMA 8. Let R =A{x,,...,x.} be a prime p.i. ring, P a height one

prime ideal of R satisfying (xx). Let I = Conductor(R, T(R)) N P. Then for
every integer m there exists an integer f=f(m) and s €S so that P’s€I™,
sPCIm.

Proor. Firstly, as in the previous proof, I is an ideal in T(R). Let
V., ..., V,be the other minimal primes in R containing /.

We have PAVaPiVa. . - VaPha CI™. Since V; # Pfori=1,...,r we pick
teN_; ¥;NS.Let e = max{e, |i =1,...,p}and z=¢. Thus

PlzoPhzbph. . . Php'Phu C ™, foralle,B,...,7 = 1.

Now since *det(z)= —c,_(2)z- -+ +c(2)z" ' —z" (c)(2) =tr(z)), we
have
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P/zePhzPPh. « . Pl det(z) P

n
C Y PhzoPhzPPh. . . PhziPhvic,_(2)

i=1
g Z Imcn—i(z) g Im’
i=1
where the last inclusion is valid since 7 is an ideal in T(R). Similarly
PhzoPh?Ph. . . Phdet’ (z)Phn CI™  foralla,fB,...,72 1.
Now by Theorem 2, taking z = s, there exist vy, ..., v,ER, v;ES so that
vodet?(s) + v, det " i(s)+ - -+ + v, =0.

Consequently

PhzePhzf . . . PhPhawy,

d-1
- 2 PhzePhzfph. . 'prprnde‘[(z)d‘ivi
i=0

d=1
= Y, PhzePhzf...Phdet?=!(z)Phew, CI™.
i=0

We can continue the process and finish taking
fmy=fi+---+fu and s=()f*"
The argument for sP/ C I™ is similar. Q.E.D.

DEFINITIONS. LetJ C Pbe an ideal in R. J*, the i-th symbolic power of J,
is defined by

JO = {x ER | there exists s €S, such that either sx €J or xs €J'}.

REMARK. It is not clear that J©, i = 1, is an ideal in R (for an arbitrary
ideal J).

LEMMA 9. Letl, P be as in Lemma 8. Then
I = (x ER | there exists s €S, sx EI™}
= (X ER | there exists SES, xs EI™)

= (X ER | there exists sES, det(s)x EI™}.
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ProoF. Let x €R, s €85 such that sx €EI™. Hence

det(s)x = Y tc,_;(S)SXE Y c ()™ CI™,
. “

i=1 i=

since [ is an ideal in T(R). Conversely, say det(s)x €™ for some s €S. Then,
since I is an ideal in T(R), det’(s)x €I™ for all y = 1. By (*«), there are
Vo, .. ., Vi1 ER, v, €S, such that

vodet?(s) + v, det " (s)+ - - - + v, =0.
Consequently vux = I, — v,_; det'(s)x €I™. Consequently
{xER |thereexists sES, sx EI™} = (x ER | there exists s €S, det(s)x €™}

and similarly is equal to {x ER |there exists sES;xsE€I™}. Clearly this
implies that 1™ is equal to each one of the previous sets. Q.E.D.

CoROLLARY 10. I js a two sided ideal in R.

Proor. Trivial by using Lemma 9.

LemMa 11. Let P, I, f, m be as in Lemma 8. Then we have
PPCPOCIM™MCP.

ProofF. Clearly P/ C PY. Let x €PY. Hence, there exists tES so that
either xt EP' of tx EP’. Say xt EP’. By Lemma 8, there exist s €S so that
Ps C I"™. Consequently, x(ts) = (xt)s EI™, that is x € ™. The possibility that
tx € P/is handled similarly using sP/ C I"™. So PP’ C I is established. Finally
we shall show that /™ C P. Let x€EI™so xs €I™ C I C P, for some s €S. But
SES = €¢(P) ensures that xEP. Q.E.D.

LEMMA 12. Let R = R/I'™, P = P/I'. Then ¢(P) C %(0).

PROOF. Letd € €(P), ax = 0. We shall show that x = 0. We have ax €™,
a € €(P). Let t €S satisfying t(ax)EI™, then (ta)x €I™ implies that x €1,
i.e. x = 0. That ya = 0 implies y = 0 is proved along the same lines. Q.E.D.

ProrosITION 13. Let R = A{x,,..., X} be a prime p.i. ring, P a height
one prime ideal in R such that P/P? is finitely generated as a right R module. Let
I = Conductor(R,T(R)) N P. Then, given XER,sES, thereexist yER, 1 €S
so that xt — sy E€I™.

Proor. Itisstandard to show that P/P'is right finitely generated for each i.
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So, by Lemma 11, R = R/I“™ has a unique minimal prime P = P/ and Pis
right finitely generated. Moreover, by Lemma 12, €(P) C €(0). So, by the
non-noetherian version of Small’s theorem appearing in [W], R has a right
Artinian quotient ring. That is, there are y,ER, t,ES so that xt, — sy, EI™,
Let 1,€.5 so that (xt, — sy ),EI™ (Lemma 9). Take ¢t = t;t,, y = yit,. Q.E.D.

LEMMA 14. Let R, P be as in Theorem 2. Let S = 6(P) and s€S. Then
there exists a natural number m, so that ifa €I™, there existst €S, b €150 that
at =sb.

Proor. I =IT(R)=1I1Z(T(R)). So, since T(R) is noetherian
I=gTR)+ -+ +&T(R)=gRZ(T(R)) + - - - + &RZ(T(R)),

where g, €1 C R. Consequently, for any m, each element of /™ is a sum of
terms of the form g;,7,2,8is222 * * €mtmZn Where r,€ER, z,€EZ(T(R)), i =
1,...,m. Now s~ C I, s0 s 'g; = h(det(y)) ™', h, €I, for some yES.
Equivalently g;det(y)=sh;,, i=1,...,x.

By (s+) we have v, det’(p)+ - - - + v, =0, v,ER, v,ES. So

(8urzi+ * *drZalVa = — Gz * + - il iZa)Vo det!(¥) + « + « + v, det(y))
= —(shyriz;« - ~Shyrzvo + shirizy -« - Shig_ 74124 (Gt Za¥y + -+
+ shinzi8irz: + i Zava-1) = Sb,
where
b=—hyrz - shgzyo— -+ — hynzgarnz: - 8l iZaVa-1-

Now b €1, since each summand contains &;, € and [ is also an ideal in
T(R). By linearity the same holds for all elements of I¢. So pick m, =d, t = v,,
and b as above. QED

THE PrROOF OF THEOREM 1. We establish first the sufficiency of (). By
Theorem 2, P satisfies (#x). Let XER, s€S5=%(P). We pick m,; which
satisfies the conclusion of Lemma 14. By Proposition 13 there exists y ER,
t’'eS so that xt’ —sy€I™. Let a =xt’ — ys€I™ and b, ¢t as in Lemma 14,
Then (xt’ — sy)t = at = sb. Equivalently, xt’t = s(yt + b) and the right Ore
condition is clearly verified. To prove the necessity of condition (*) we use the
same argument as in [BW]. Q.E.D.
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